Kinesin-13 regulates the quantity and quality of tubulin inside cilia
نویسندگان
چکیده
Kinesin-13, an end depolymerizer of cytoplasmic and spindle microtubules, also affects the length of cilia. However, in different models, depletion of kinesin-13 either lengthens or shortens cilia, and therefore the exact function of kinesin-13 in cilia remains unclear. We generated null mutations of all kinesin-13 paralogues in the ciliate Tetrahymena. One of the paralogues, Kin13Ap, localizes to the nuclei and is essential for nuclear divisions. The remaining two paralogues, Kin13Bp and Kin13Cp, localize to the cell body and inside assembling cilia. Loss of both Kin13Bp and Kin13Cp resulted in slow cell multiplication and motility, overgrowth of cell body microtubules, shortening of cilia, and synthetic lethality with either paclitaxel or a deletion of MEC-17/ATAT1, the α-tubulin acetyltransferase. The mutant cilia assembled slowly and contained abnormal tubulin, characterized by altered posttranslational modifications and hypersensitivity to paclitaxel. The mutant cilia beat slowly and axonemes showed reduced velocity of microtubule sliding. Thus kinesin-13 positively regulates the axoneme length, influences the properties of ciliary tubulin, and likely indirectly, through its effects on the axonemal microtubules, affects the ciliary dynein-dependent motility.
منابع مشابه
Cell-Specific α-Tubulin Isotype Regulates Ciliary Microtubule Ultrastructure, Intraflagellar Transport, and Extracellular Vesicle Biology
Cilia are found on most non-dividing cells in the human body and, when faulty, cause a wide range of pathologies called ciliopathies. Ciliary specialization in form and function is observed throughout the animal kingdom, yet mechanisms generating ciliary diversity are poorly understood. The "tubulin code"-a combination of tubulin isotypes and tubulin post-translational modifications-can generat...
متن کاملThe Tubulin Deglutamylase CCPP-1 Regulates the Function and Stability of Sensory Cilia in C. elegans
BACKGROUND Posttranslational modifications (PTMs) such as acetylation, detyrosination, and polyglutamylation have long been considered markers of stable microtubules and have recently been proposed to guide molecular motors to specific subcellular destinations. Microtubules can be deglutamylated by the cytosolic carboxypeptidase CCP1. Loss of CCP1 in mice causes cerebellar Purkinje cell degener...
متن کاملKlp10A, a Microtubule-Depolymerizing Kinesin-13, Cooperates with CP110 to Control Drosophila Centriole Length
Klp10A is a kinesin-13 of Drosophila melanogaster that depolymerizes cytoplasmic microtubules. In interphase, it promotes microtubule catastrophe; in mitosis, it contributes to anaphase chromosome movement by enabling tubulin flux. Here we show that Klp10A also acts as a microtubule depolymerase on centriolar microtubules to regulate centriole length. Thus, in both cultured cell lines and the t...
متن کاملCilium Assembly: Delivery of Tubulin by Kinesin-2-Powered Trains
The kinesin-2-driven anterograde transport of intraflagellar transport (IFT) trains has long been suspected to deliver cargo consisting of tubulin subunits for assembly at the axoneme tip. Important new work identifies the tubulin binding site on IFT trains that is responsible for this cargo transport.
متن کاملFlagellar regeneration requires cytoplasmic microtubule depolymerization and kinesin-13.
In ciliated cells, two types of microtubules can be categorized: cytoplasmic and axonemal. It has been shown that axonemal tubulins come from a 'cytoplasmic pool' during cilia regeneration. However, the identity and regulation of this 'pool' is not understood. Previously, we have shown that Chlamydomonas kinesin-13 (CrKin13) is phosphorylated during flagellar regeneration, and required for prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 26 شماره
صفحات -
تاریخ انتشار 2015